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Abstract

This article represents an expanded version of various talks the au-
thor has given to a variety of audiences. It contains no new results and
its sole purpose is to “wet” the reader’s appetite to topics discussed
here and provide sufficient guidance and references to the literature.

Between two truths of the real
domain, the easiest and shortest
path quite often lies through the
complex domain.

P. Painlevé

1 Introduction

Let’s illustrate the above quote with a very simple example.

(i) Consider a perfect “bell-shaped graph” f(x) = 1
1+x2

. If we take its
Taylor series around the origin

f(x) =
∞∑
0

(−1)nx2n,
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we note immediately that it diverges for all real x : |x| ≥ 1. Why?
Of course, the answer is clear, if we replace x by a complex variable
z, the function f(z) := 1

1+z2
has two polar singularities at z = ±i

on the boundary of the circle of convergence. Thus, since the Taylor
series naturally converge in disks in the complex plane, presence of
complex singularities interferes with the behavior of the series in the
real domain.

(ii) In the opposite direction if we consider the Taylor series

f(x) =
∞∑
0

cos
(√

n
)
xn

that converges only for |x| < 1, the function f(x) extends as a smooth,
in fact a real-analytic function, to all real x < 1. In fact, if we consider

f(z) :=
∞∑
0

cos (
√
n ) zn as an analytic function of the complex variable

z, it extends as an analytic function to the whole complex plane Cr{1}
except one point z = 1, where f(z) has an essential singularity. How
do we know that?

There is an enormous amount of literature dedicated to studying the
properties of analytic functions at large encoded in their local expansions in
Taylor series — cf., the classical monographs by P. Dienes and L. Bieberbach
([3], [4, Ch. X]). One of the first results in this direction is the following
beautiful theorem of L. Kronecker ([4, Ch. X]).

Theorem 1.1 (L. Kronecker, 1881 [12]). The Taylor series
∞∑
0

anz
n rep-

resents a rational function f(z) = P (z)/Q(z), P,Q are polynomials and
max (degP, degQ) = N if and only if all the determinants

det


a0 · · · an
a1 · · · an+1
...
an · · · a2n

 = 0 for all n ≥ N.

Our example (i) illustrates this theorem with N = 2. Since rational
functions are obviously globally defined on the whole Riemann sphere, Kro-
necker’s theorem is a very good example of a mandatory analytic continuation
(single-valued as well) of a locally defined Taylor series.
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The example (ii) is an illustration of a compilation of results of L. Leau
— 1899, S. Wigert — 1900 and G. Faber — 1903, cf. [4, p. 337 ff].

Theorem 1.2 (G. Faber, L. Leau, S. Wigert). The Taylor series
∞∑
0

anz
n

with the radius of convergence 1 extends to C r {1} if and only if there
exists a (unique) entire function g(z) of order zero (minimal type) such that
an = g(n), n = 1, 2, . . . . If g(z) is a polynomial of degree m then 1 is a pole
of order m+ 1.

(Recall that an entire function g is called of minimal type if for every
ε > 0 there exists a constant Cε such that |f(z)| ≤ Cεe

ε|z|.)

For example, the geometric series
∞∑
0

zn = 1
1−z illustrates the latter part

of the theorem with m = 0.
To illustrate the ideas behind this and similar results let’s sketch a slightly

more modern result of this type due to T. Qian ([14]) and D. Khavinson [8],
(the latter with a different, much shorter proof).

Theorem 1.3 ([8, 14]). Let f(z) =
∞∑
1

bnz
n be an analytic function in

D := {|z| < 1}, and bn = g(n), where g is of minimal type in the sector
Sϕ :=

{
z : | arg z| < ϕ, 0 < ϕ ≤ π

2

}
. Then, f(z) extends to the “heart-shaped”

domain Ωϕ :=
{
z = reiθ, 2π − cotϕ · log r > θ > cotϕ · log r

}
.

Note that when ϕ = π
2
, Ωϕ = Cr [1,+∞).

Sketch of the proof [8] following ideas of Le Roy and Lindelöf [4, p. 340 ff].
By the residue theorem

N∑
1

g(n)zn =

∫
γ

g(w)zwdw

e2πiw − 1
, (1.1)

where γ is any contour in Sϕ enclosing the integers 1, . . . , N and no others.
(Can choose, e.g., for γ the boundary of the sector{
w : | arg (w − α) | ≤ ϕ, |w − α| ≤ R, 0 < α < 1

2
, R = N + 1

2

}
.) γ = γϕ ∪ γR,

where γR is a circular part of the boundary, while γϕ comprises two sides of
the angle with vertex at α.

An elementary argument yields that for all w ∈ C r
∞⋃

n=−∞
{z : |z − n| <

η, η > 0-small}, |e2πiw − 1| ≥ c > 0, c = c(η) is a constant ([4, p. 341]).
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Hence, the part of the integral (1.1) restricted to γR tends to zero when
R → ∞ (i.e., N → ∞) for z = −r, 0 < r < 1, i.e., z in D and on the
negative radius. (This is seen from an elementary estimate |eπiw − e−πiw| ≥
ceπR| sin θ| > c, for w = α + Reiθ, assuming at first ϕ < π

α
.) Thus, for

z ∈ (−1, 0] in D,

f(z) =

∫
Γϕ

g(w)zw

e2πiw − 1
dw, (1.2)

where Γϕ := lim
R→∞

γϕ = {w · arg(w − α) = ±ϕ}. Thus, in order for the inte-

grand in (1.2) to decay exponentially on Γϕ, we obtain using the assumptions
on g, that it suffices to have

cotϕ · log |z| < arg z, for arg(w − α) = ϕ

and
2π − cotϕ · log |z| > arg z for arg(w − α) = −ϕ.

This proves the statement for ϕ < π
2
, since (1.2), an analytic function in z,

converges for all z ∈ Ωϕ and coincides with f on (−1, 0). Finally, Ωπ
2

=⋃
ϕ<π

2

Ωϕ.

Remark. The assumptions on g can be relaxed somewhat further (to g being
of exponential type less than π — cf. [4, pp. 341–342]). It is not known
whether Ωϕ is the largest domain one can extend f(z) to. Thus, the “only
if” part is still missing unlike for classical results of Kronecker and Leau
(Thms. 1.1 and 1.2).

Of course, it is impossible in an article like this one to survey all beauti-
ful topics investigated in the classical avenue of analytic continuation: mon-
odromy, continuation of algebraic functions, over-convergence and gap series,
universal Taylor series, and many others. We hope that an interested reader
will be tempted to continue research on her own: [4, Ch. X, XI], [3] are good
books to start. The more recent vast literature on universal Taylor series can
be found on MathSciNet.

From these classical themes of continuation of Taylor series, let’s make
a leap to the problem of analytic continuation of solutions of most basic
equations of mathematical physics.
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2 Continuation of solutions of linear PDE

2.1 ODE vs. PDE

It is well known that the solution of the initial value problem for the linear
ODE

w(n)(z) + an−1(z)w(n−1)(z) + · · ·+ an(z)w′(z) + a0(z)w(z) = f(z),

w(0) = w0, . . . , w
(n−1)(0) = wn−1,

(2.1)

with the coefficients aj’s and f analytic in a domain Ω containing the origin,
extends as analytic function throughout Ω. (It might end up being multi-
valued, if Ω is not simply connected, i.e., has holes, but nevertheless can be
analytically continued everywhere in Ω.)

Yet, if we consider a very simple initial value problem for PDE:

∂w

∂y
= x2∂w

∂x
, w(x, 0) = x; (2.2)

the easily found solution w := x
1−xy blows up arbitrarily close to the initial

line {y = 0} on the hyperbola y = 1/x. How can we explain this?
Moreover, if we consider a more general initial value problem for (2.2)

with arbitrary “data” w(x, 0) = f(x), where f is a polynomial, or an entire
function, one easily checks that the solution is

w(x, y) := f

(
x

1− xy

)
.

This is striking, since it yields that the variety Γ := {xy = 1} is the only
possible carrier of singularities for all solutions to (2.2), independently of the
data, as long as the data itself has no singularities.

Let’s postpone the heuristic explanation of this fact till later and discuss
another natural problem of analytic continuation coming from mathematical
physics.

2.2 G. Herglotz’ Memoir of 1914

The following question was first tackled by G. Herglotz in 1914 (also, cf.
[15, 18]). Imagine a solid in R3, or a “plate” (a domain) in R2, Ω, bounded
by, say, a nice algebraic surface (or, a curve).
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Let

uΩ(x) =

∫
Ω

kn(x, y) dy, (2.3)

where

kn(x, y) =
1

2π
log

1

|x− y|
, n = 2

=
−1

4π

1

|x− y|
, n = 3

be the “gravitational” or “electrostatic” potential of Ω. Obviously, u is har-
monic outside Ω and the natural question tackled by Herglotz was: how far
can one harmonically continue u(x) inside Ω before running into a singular
point? (Herglotz did answer the question in R2 and made some headway in
R3, but because his prize winning memoir appeared on the brink of World
War I it fell into oblivion while most of the results were rediscovered by other
authors — cf. the references in [10, 16]. For example, if Ω is a disk or a ball,
then, of course, (e.g., n = 3) by the mean value theorem, we have:

uΩ(x) = − 1

4π

∫
{|y|<1}

dy

|x− y|
=

const

|x|

(dy, of course, stands for the Lebesgue measure in Rn.)
So, uΩ(x) extends as a harmonic function everywhere in R3 except for the

center of the ball. This goes back to I. Newton and is well-known. What is
perhaps less well-known is that conclusion stays true for

uΩ,p(x) = − 1

4π

∫
Ω

p(y) dy

|x− y|
, Ω = {y : |y| < 1}

with an ARBITRARY polynomial, or even an entire density p(y). In the
latter case, all the symmetry associated with the ball goes out the window,
and the conclusion that uΩ,p extends harmonically to all of R3r{0}, matches
Leau’s theorem from Section 1 in mystery and beauty.

Herglotz’ problem is often restated in more “physical” terms: consider
the exterior gravitational potential of an analytic mass density p0(y) in the
region Ω. Find a smaller object E inside Ω and a different mass-density p1

on E that is gravi-equivalent to p0, i.e., such that the potential uE,p1 and
uΩ,p0 coincide outside of Ω.
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Example 2.1. For Ω = {x : |x| < 1} ⊂ R3 (or, more generally, Rn) p0 =
polynomial of degree ≤ N , E = {0} and p1 is the distribution of order ≤ N
at the origin.

Example 2.2 (cf., [9, 10, 16]). An oblate spheroid

Ω :=

{
x ∈ R3 :

x2
1

a
+
x2

2

a2
+
x2

3

b2
≤ 1, a > b > 0

}
(planet Earth, e.g.). Then, for say, uniform density p0 ≡ 1 (or any other
polynomial, or, entire density) uΩ(x) extends into Ω r E, where

E :=
{
x3 = 0, x2

1 + x2
2 ≤ a2 − b2

}
is the caustic disc. The relevant density p1 on E (relevant to p0 = 1) is

algebraic and equals const (a2 − b2 − x2
1 − x2

2)
1/2

— cf. [10, Ch. 15].

Example 2.3. A prolate spheroid Ω :=
{
x21
a2

+
x22
b2

+
x23
b2
≤ 1, a > b > 0

}
gives

a completely different picture, an exciting mystery on its own. The poten-
tial uΩ extends to Ω r E, but E in this case is a 1-dimensional segment{
x2 = x3 = 0, |x1| ≤

√
a2 − b2

}
, while the density p1 = (a2 − b2 − x2

1) is a
polynomial. Moreover, below we shall touch upon the rather deep prob-
lem regarding the dramatic differences in singularities of uΩ in the latter
two examples: bounded, a square-root type singularity in the former, and
unbounded — in the latter.

2.3 A further discussion of the Herglotz question

As one readily obtains directly from (2.3) via Green’s theorem,

∆uΩ = χΩ, (2.4)

where χΩ(x) =

{
1, x ∈ Ω

0, x ∈ Rr Ω
and stands for the characteristic function

of Ω. Denote by M , the so-called modified Schwarz potential (of ∂Ω) the
solution of the following initial value problem

∆M = 1 near Γ := ∂Ω;

M = ∇M = 0 on Γ.
(2.5)
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(The solution exists and is unique by the Cauchy–Kovalevskaya theorem —
cf. [10], e.g.) Then, the function

u :=

{
uΩ, outside Ω

uΩ −M inside Ω
(2.6)

gives the desired continuation. Indeed, uΩ−M is harmonic in Ω near Γ and
coincides with uΩ on Γ together with its first derivatives. The statement then
follows by a straightforward application of Green’s formula — cf. [10, Thm.
6.1].

For an arbitrary polynomial, or entire mass density p we only need to
modify (2.5) and define Mp as a solution of the initial value problem{

∆Mp = p near Γ;

Mp = ∇Mp = 0 on Γ.
(2.7)

If instead of M we consider the Schwarz potential uΓ of Γ defined by{
∆uΓ = 0 near Γ;

uΓ = 1
2n
|x|2 on Γ; graduΓ = 1

n
~x on Γ

(2.8)

(n = 2 or 3, as in our examples), then obviously, MΓ = 1
2n
|x|2−uΓ. Similarly,

Mp = Q−uΓ,p, where Q is a polynomial, an entire function such that ∆Q = p,
and uΓ accordingly defined as a solution of the initial value problem similar
to (2.8): {

∆uΓ,p = 0 near Γ;

uΓ,p = Q,∇uΓ,p = ∇Q on Γ.
(2.9)

Thus, if we could show that the singularities of any initial value problem for
the Laplace operator posed on Γ are only dictated by Γ itself, not by initial
data ( 1

2n
|x|2, or Q), we would have achieved the high ground needed for

understanding the Herglotz’ problem. A deep and beautiful theory of Leray
explains the origins for appearance of singularities of initial value problems
near initial surfaces — cf. [10, Ch. 13, 19–20] and Leray’s original papers
referenced there.

Indeed, generically, it asserts that the singularities appear and take off
(locally, sic!), from the initial surfaces at the same places and along the same
routs independently of data. Moreover, in dimension 2, and also, in higher
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dimensions, but only for quadratic surfaces, it has been proved that the local
theory of Leray, first verified only near initial surfaces, holds globally —
cf. [10]. Here, we will simply illustrate the Leray principle by a couple of
straightforward examples. We only sketch the main steps, more details can
be found in [10].

Example 2.4. Let Ω =
{
x2

a2
+ y2

b2
− 1 < 0, a > b

}
be an ellipse, Γ := ∂Ω.

One can calculate uΓ, and then further

1

2
∇uΓ =

∂uΓ

∂z̄
=
a2 + b2

a2 − b2
z̄ − 2ab

a2 − b2

√
z̄2 − c2, c2 − a2 − b2 (2.10)

(z = x + iy, as usual). So, the singularities of uΓ are at the foci of Ω. The
solution of the initial value problem (2.8) is fine by the Cauchy–Kovalevskaya

theorem near complexified quadratic curve Γ̂ in C2,

Γ̂ :=

{
x, y ∈ C :

x2

a2
+
y2

b2
− 1 = 0

}
except for 4 points

{(
±a2

c
,± b2

c

)}
on Γ̂ where C–K theorem breaks down.

From those “bad” points, as Leray’s theory asserts, the singularities travel
along 4 complex (characteristic) lines {(x, y) ∈ C2 : x± iy = const} tangent

to Γ̂ at the above characteristic points. These lines, the“carriers” of singu-
larities, reach the “real” space R2 at the foci (±c, 0) of the ellipse. Since the
carries of singularities depend on Γ only, logarithmic potentials of Ω with ar-
bitrary polynomial, or entire densities exhibit the same behaviour and might
become singular only at the foci as well.

Moreover, when b ↑ a, c ↓ 0, an ellipse becomes a circle, the “bad” points
on Γ̂ all move to infinity and the singularities of (2.10) change from algebraic
(
√

-type) to polar- c
z

at the origin, the limiting position of the collapsing foci.
A similar, but technically much more demanding analysis provides the

justification for Examples 2.1–2.3 in R3, and in general in Rn — cf. [10] and
the works of G. Johnsson referenced therein. However, we emphasize that
for algebraic surfaces of degree ≥ 3 in Rn, n ≥ 3, the analysis of Herglotz’
problem, i.e., the global version of Leray’s principle, is still waiting to be
discovered.

We shall finish this section with another transparent example illustrating
Leray’s theory.
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Example 2.5. Consider the initial value problem

∂2u

∂x∂y
= 0, near Γ :=

{
y = x3

}
;

∂u

∂x
= y,

∂u

∂y
= x on Γ.

(2.11)

One readily finds the solution u(x, y) = x4

4
+ 3y4/3

4
that is “ramified” around

{y = 0}. The latter is in fact Leray’s characteristic tangent to Γ at the
(unique, w.r.t. ∂2

∂x∂y
operator) “bad”, characteristic point (0, 0).

In higher dimensions the situation is more complicated. In a nutshell,
there are more “complex characteristic lines” tangent to the initial surface
that we view as continuation of Γ into Cn. These lines carry out singu-
larities off the initial surface. The analytic functions having singularities
on a piece of an analytic hypersurface however must be singular on the
whole hypersurface by a celebrated theorem of Hartogs (in Cn, n > 1, of
course). In other words, the singularities propagate from “bad” points on
the complexified (embedded into Cn) surface Γ and then exhibit themselves
in Rn at points where the Leray characteristic tangent, the carrier of sin-
gularities, hit Rn. This is transparent and proved rigorously (cf. [10, Ch.
13], e.g.), by G. Johnsson for quadratic surfaces in Rn — cf. [10, Ch. 19-
20] and references to Johnsson’s original papers contained therein. This
also explains the difference in the nature of singularities in Examples (2.2)–
(2.3). In the case of the oblate spheroid, each point on the circular caus-
tic {x2

1 + x2
2 ≤ a2 − b2, x3 = 0} is a “meeting point” of true characteristic

lines coming from C3 and tangent at characteristic points on the complexi-

fied surface
{

(x1, x2, x3) ∈ C3 :
x21
a2

+
x22
a2

+
x23
b2
− 1 = 0, a > b

}
. For the prolate

spheroid, each point of the caustic segment
{
|x1| ≤

√
a2 − b2, x2 = x3 = 0

}
is a meeting point of infinitely many characteristics, thus causing unbounded
singularities. So, intuitively, the idea that “more carriers of singularities
meeting at a point in Rn” should result in a “heavier” singular behaviour
is tempting and reasonable. However, essentially, nothing has been rigor-
ously proved along these lines. A worthy and challenging avenue for further
research.
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3 Analytic Continuation and Problems of Unique-

ness

Consider the spherical shell Ω := {x ∈ R3 : r < |x| < R} (|x|2 = x2
1 +x2

2 +x2
3,

as usual). Let u be a harmonic function in Ω that vanishes on the segment
(−R,−r) of the x1-axis. Then, let us pose the question (cf. [10, Ch. 9]).

Question 3.1. Must u also vanish on the segment r < x1 < R, x2 = x3 = 0?

The same question in 2 dimensions can be easily settled by elementary
complex analysis. To fix the ideas, let r = 1, R = 2, n = 2. Consider the
harmonic function v(z) := u(z)+u (z̄) in the annulus Ω := {1 < |z| < 2}. By
the Schwarz effection principle, v ≡ 0 in a small disk centered on (−2,−1),
say,

{
z :
∣∣z + 3

2

∣∣ < 1
4

}
. Hence, v ≡ 0 in Ω and, accordingly, 2u(x) = v(x) = 0

on (1, 2). Thus, in this situation the answer is “yes”. Although, the answer
is also “yes” in Rn, n ≥ 3, the above argument of course, fails. Moreover, the
above argument doesn’t work either if instead of a line through the center of
the annulus, or a spherical shell, we consider an arbitrary line still cutting Ω
in two disjoint segments. It might come as a surprise that the answer remains
“yes” if R

r
> 3 (a thick annulus, or shell), but becomes “no, not necessarily”

if R
r
≤ 3 (a thin annulus) and the constant 3 is sharp (cf. [10, Ch. 9], [11]).

Even more intriguing ([10, Ch. 9]), the same question posed for a torus in
R3, has always a negative answer in general.

What is the high ground for this question? The answer is: analytic
continuation. Indeed, a harmonic in a domain Ω ⊂ Rn, n ≥ 2, function u
automatically extends as a holomorphic function of n variables to a domain
Ω̂ in Cn. Ω̂ can be viewed in a rather simple way as follows. For all xo ∈

Rn r Ω, consider the isotropic cone Γxo :=

{
z ∈ Cn :

n∑
1

(
zj − x0

j

)2
= 0

}
.

Then, Ω̂ := Cn r
⋃

xo∈RnrΩ

Γxo — cf. [1, Ch. 1].

The beautiful fact established in the theory of linear analytic PDE is that
solutions of ALL PDEs (∆n+ lower terms) u = f with, say polynomial or en-

tire coefficients in Ω automatically extend to Ω̂. For example, if Ω = {|x| < 1}

is the unit ball in Rn, n ≥ 2, Ω̂ =

z ∈ Cn :

(
‖z‖4 −

∣∣∣∣ n∑
1

z2
j

∣∣∣∣2
)1/2

+ ‖z‖2 < 1

,

the celebrated Lie ball (cf. [1, 2, 10]). (For n = 2, Ω̂ = {(X, Y ) ∈ C2 : |X ± iY |},
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the bidisk (cf. [1, 2, 10]). Thus, a sufficient condition that would yield an

affirmative answer to our question, is whether the intersection Ω̂ ∩ {Y = c}
the harmonicity hull of the shell Ω and the complexified line {y = c} (in
dimension 2, e.g.) is connected or not. In the original question for the an-
nulus, for example, this intersection becomes {(X, c) : r < |X ± ic| < R}
and is disconnected if R−r

2
< c < r, and connected if 0 < c ≤ R−r

2
. If

R
r
≥ 3, e.g., R−r

2
≥ r > c, so the intersection of Ω̂ and the complex line

{Y = c} is connected. The fact that the constant 3 is sharp is seen (T.
Ransford) by taking Ω to be an annulus separating {0,−i} from i, and
u(z) := Re

√
z(z − i)(z + i), where we can take any branch of the square

root. Then, u(x) = 0, x < 0 and u(x) > 0, x > 0. R
r
< 3 but can be made

arbitrary close to 3 — see [11], [10, Ch. 9] for more details.
As is remarked in [11], this simple consideration allows to answer ques-

tions similar to Q. 3.1 not only for solutions of linear PDE with the power
of the Laplacian in the principle part, but also for functions represented by
arbitrary Riesz potentials, the latter, in general, need not satisfy any linear
PDE.

4 Analytic Continuation of Series of Zonal

Harmonics and Series of Orthogonal Poly-

nomials

By analogy with analytic continuation of Taylor series, let’s consider the
problem of finding singularities of other series expansions. To fix the ideas,
let

u :=
∞∑
n=0

anr
nPn(cos θ) (4.1)

be an axially symmetric harmonic function in the unit ball in R3. an ∈
R, lim

n→∞
|an|1/n = 1, Pn(x) = 1

2nn!
dn

dxn

[
(x2 − 1)

n]
are Legendre polynomials

(orthogonal on [−1, 1], ‖Pn‖2
2 = 2

2n+1
). r = (x2

1 + x2
2 + x2

3)
1/2

the distance to
the origin, θ is the usual azimuth angle in spherical coordinates. One can
easily verify that the expansion (4.1) diverges for r > 1, so u must have
singularities on the unit sphere S2 := {r = 1}. The question is where? The
following remarkable theorem was proved by G. Szegő in 1954 [17].

12



Theorem 4.1. u(r, θ) extends harmonically across the circle (1, θ0 : 0 ≤ ϕ ≤ 2π)

on the sphere S2 if and only if the Taylor series (!) f(ξ) :=
∞∑
k=0

anξ
n extends

across ξ0 := eiθo .

This is a truly amazing result, since at first glance, the expansions in
zonal harmonics and the Taylor series built with the same coefficients should
have nothing in common. Moreover, inspired by Szegő’s theorem, Nehari
proved the following beautiful follow-up [13].

Theorem 4.2. Let {an} ∈ C, satisfy lim
n→∞

|an|1/n = 1
R

, R > 1 and let

f(t) =
∞∑
n=0

anPn(t) be (as is easily checked) an analytic function inside the el-

lipse DR with foci at ±1 and sum of whose semiaxes equals R. In other words,

DR :=
{

(x, y) : x2

a2
+ y2

b2
< 1, a+ b = R, a− b = 1

R

}
. P (t), as in Szegő’s the-

orem, denote Legendre polynomials. Then, f(t) is analytically continuable

across to ∈ ∂DR if and only if the analytic function g(s) :=
∞∑
n=0

ans
n, |s| < R,

where s and t are related by the conformal map s = ϕ(t) = t +
√
t2 − 1,

ϕ : Ĉ r [−1, 1] → {s ∈ C : |s| > 1}, ϕ(∞) = ∞, is analytically con-
tinuable across the corresponding point s0 = ϕ (t0), (t0 = 1

2

(
s0 + s−1

0

)
),

s0 ∈ {s : |s| = R}.

Once again, the reader should observe how Nehari’s result, unexpectedly,
connects the singularities of the expansion in orthogonal polynomials with
seemingly disjoint Taylor series.

Since there is a wide variety of results allowing one to identify singu-
larities of Taylor series on the circle of convergence, the above two results
provide a powerful tool for identifying singularities of harmonic functions and
orthogonal polynomial expansions.

Both theorems can be significantly extended by replacing Legendre poly-
nomials with arbitrary Jacobi orthogonal polynomials (R. P. Gilbert (1969),
P. Ebenfelt–D. Khavinson–H. S. Shapiro (1996)) — cf. [10, Ch. 10], [5], [6]
and references therein.

Recall that for α, β > −1, the Jacobi polynomials are orthogonal polyno-
mials on [−1, 1] with respect to the weight (1 − x)α(1 + x)β, normalized by

Pα,β
n (1) =

(
n+ α
n

)
. So, α = β = 0 corresponds to Legendre polynomials,
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α = β = −1
2

— Tschebysheff polynomials (that, in turn, under a suitable
change of variables, correspond to monomials zn, n ≥ 0 in the unit disk —
cf. [5, 6, 10]; α = β = k−3

2
, k ≥ 2 being an integer corresponds to ultras-

pherical polynomials appearing in expansions of axially symmetric harmonic
functions in Rk (Gegenbauer polynomials).

Now, the original proofs of Thms. 4.1 and 4.2 boil down to writing down
the given expansions in terms of a certain integral and ingenious manipu-
lation of the latter. The “high ground” approach advocated and developed
in [5, 6] consists of noticing that ALL relevant expansions in general Jacobi
polynomials can be interpreted as solutions of a Cauchy problem for a lin-
ear PDE in two variables with the same initial data. Of course, the partial
differential operator corresponding to every particular expansion is different
in each case. But all of them share the same principal part, the part of the
differential operator that involves the senior derivatives. A deep result in
the theory of linear PDE, based on the 1970 extension by M. Zerner (cf. [10,
Ch. 4] of the classical Cauchy–Kovalevskaya theorem yields that the singu-
larities of the solutions of the Cauchy problems locally depend exclusively
on the principal part of the differential operator. Hence, all the expansions
in Thms. 4.1 and 4.2 share the same singularities thus unveiling the mystery
behind Szegő’s and Nehari’s results.

5 An Epilogue

This article’s only intent is to initiate for the curious reader a few possible
modern directions in the classical theme of analytic continuation. There is
absolutely no way to cover all possible topics, thus our choices were limited
to several topics the author felt most comfortable with.

There are so many themes which were left out entirely, e.g., beautiful
results of Eisenstein regarding algebraic properties of Taylor series depend-
ing on properties of coefficients — [3, 4]. Essentially, no deep and subtle
results, starting from Painlevé classical researchers, dealing with classifica-
tion of singularities and analytic continuation of solutions to nonlinear ODE
in the complex domain — cf., e.g., [7]. In classical potential theory, we left
out beautiful modern generalizations due to A. Givental of the Newton’s
“no gravity in the ellipsoidal cavity” theorem, Ivory’s theorem, MacLauren’s
mean value theorem for ellipsoids, viewed from the modern viewpoint of ana-
lytic continuation of Cauchy’s problem for the Laplace equation — cf. [9, 10]
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and references therein. The theme of analytic continuation of solutions to
the Dirichlet problem in domains with algebraic boundaries is far from de-
veloped and has an attractive array of important open problems, even in
two dimensions — cf. [10, Ch. 18]. Even more basic open problems await an
interested reader if one extends the search for singularities of solutions to the
classical Dirichlet problem for the Laplacian to that for Helmholtz’ equation.
In other words, expanding the program to study possible singularities of the
eigenfunctions of the Laplacian in domains with algebraic boundaries. The
reigning open conjecture that ellipsoids are the ONLY domains for which
all eigenfunctions are entire (and of exponential type) remains virtually un-
touched.

A fairly recent solution by P. Ebenfelt and D. Khavinson — cf. [10, Chs.
11, 12] of the problem of reflection of harmonic functions across analytic hy-
persurfaces in higher dimensions (or, why doesn’t Schwarz reflection principle
work in, say, R3?) opens up a new venue for investigations: the “antenna
problem”. In short, it is the question of possibility of reflection from a point
to a compact set vs. point-to-point reflection.

Once again, more important for applications is the reflection question for
solutions of the Helmholtz equation, i.e., the eigenfunctions for the Laplacian.
That playing field is widely open as well — cf. [10] and references therein.

Finally, we have only mentioned in passing the powerful methods of an-
alytic continuations of solutions of linear analytic PDE combined with the
modern techniques of several complex variables. The results culminate in
Leray’s theory of propagation of irregularities through Cn. The underlying
techniques based on the so-called method of “globalizing families” is both
clear and quite powerful — cf. [10, Chs. 4–10, 19, 20] and references therein.

However, at present, the theory is more or less complete (we mean the
global theory of propagation of singularities) mostly in two variables and
also in n ≥ 3-variables, but there exclusively for singularities initiated on
quadratic surfaces [10, Ch. 19–20]. Once again, the importance of the re-
maining open problems is difficult to overestimate.

In conclusion, by this short survey we wanted to demonstrate that the
classical theme of analytic continuation of functions of one variable that has
intrigued researchers for at least 200 years since the concept of an analytic
function had come into focus, is alive, doing well and is quite rich with
plenty of attractive and beautiful problems, conjectures, and attractive routes
for further study. Thus, we hope that this small survey and the appended
references will prompt the reader to invest time and effort in further research
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on these truly “eternal” topics.

Acknowledgement

The author gratefully acknowledges support from the Simons Foundation.

References

[1] Nachman Aronszajn, Thomas M. Creese, and Leonard J. Lipkin. Poly-
harmonic functions. Oxford Mathematical Monographs. The Clarendon
Press, Oxford University Press, New York, 1983. Notes taken by Eber-
hard Gerlach, Oxford Science Publications.

[2] Vazgain Avanissian. Cellule d’harmonicité et prolongement analytique
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